Functions you may use in your components: ========================================= List, load and save datasets ---------------------------- .. currentmodule:: platiagro .. autofunction:: list_datasets .. code-block:: python from platiagro import list_datasets list_datasets() ['iris', 'boston', 'imdb'] .. autofunction:: get_dataset .. code-block:: python from platiagro import get_dataset dataset = "iris" get_dataset(dataset) .. autofunction:: load_dataset .. code-block:: python from platiagro import load_dataset dataset = "iris" load_dataset(dataset) col0 col1 col2 col3 col4 col5 0 01/01/2000 5.1 3.5 1.4 0.2 Iris-setosa 1 01/01/2001 4.9 3.0 1.4 0.2 Iris-setosa 2 01/01/2002 4.7 3.2 1.3 0.2 Iris-setosa 3 01/01/2003 4.6 3.1 1.5 0.2 Iris-setosa .. autofunction:: save_dataset .. code-block:: python import pandas as pd from platiagro import save_dataset from platiagro.featuretypes import DATETIME, NUMERICAL, CATEGORICAL dataset = "test" df = pd.DataFrame({"col0": ["01/01/2000", "01/01/2001"], "col1": [1.0, -1.0], "col2": [1, 0]}) save_dataset(dataset, df, metadata={"featuretypes": [DATETIME, NUMERICAL, CATEGORICAL]}) .. autofunction:: stat_dataset .. code-block:: python from platiagro import stat_dataset dataset = "test" stat_dataset(dataset) {'columns': ['col0', 'col1', 'col2'], 'featuretypes': ['DateTime', 'Numerical', 'Categorical']} .. autofunction:: download_dataset .. code-block:: python from platiagro import download_dataset dataset = "test" path = "./test" download_dataset(dataset, path) Load and save models -------------------- .. currentmodule:: platiagro .. autofunction:: load_model .. code-block:: python from platiagro import load_model class Predictor(object): def __init__(self): self.model = load_model() def predict(self, X) return self.model.predict(X) .. autofunction:: save_model .. code-block:: python from platiagro import save_model model = MockModel() save_model(model=model) Save metrics ------------ .. currentmodule:: platiagro .. autofunction:: list_metrics .. code-block:: python from platiagro import list_metrics list_metrics() [{'accuracy': 0.7}] .. autofunction:: save_metrics .. code-block:: python import numpy as np import pandas as pd from platiagro import save_metrics from sklearn.metrics import confusion_matrix data = confusion_matrix(y_test, y_pred, labels=labels) confusion_matrix = pd.DataFrame(data, columns=labels, index=labels) save_metrics(confusion_matrix=confusion_matrix) save_metrics(accuracy=0.7) save_metrics(reset=True, r2_score=-3.0) List, save and delete figures --------------------- .. currentmodule:: platiagro .. autofunction:: list_figures .. code-block:: python from platiagro import list_figures list_figures() [''] .. autofunction:: save_figure .. code-block:: python import numpy as np import seaborn as sns from platiagro import save_figure data = np.random.rand(10, 12) plot = sns.heatmap(data) save_figure(figure=plot.figure) .. autofunction:: delete_figures .. code-block:: python from platiagro import delete_figures delete_figures() Get feature types ----------------- .. currentmodule:: platiagro .. autofunction:: infer_featuretypes .. code-block:: python import pandas as pd from platiagro import infer_featuretypes df = pd.DataFrame({"col0": ["01/01/2000", "01/01/2001"], "col1": [1.0, -1.0], "col2": [1, 0]}) result = infer_featuretypes(df) .. autofunction:: validate_featuretypes .. code-block:: python from platiagro import validate_featuretypes from platiagro.featuretypes import DATETIME, NUMERICAL, CATEGORICAL featuretypes = [DATETIME, NUMERICAL, CATEGORICAL] validate_featuretypes(featuretypes) featuretypes = ["float", "int", "str"] validate_featuretypes(featuretypes) ValueError: featuretype must be one of DateTime, Numerical, Categorical Download artifact ----------------- .. currentmodule:: platiagro .. autofunction:: download_artifact .. code-block:: python from platiagro import download_artifact download_artifact(name="glove_s100.zip", path="/tmp/glove_s100.zip")